Examen National 2019

Session Normal

Exercice 1 (3 points):

Dans l'espace rapport à un repère orthonormé direct $(0; \vec{i}; \vec{j}; \vec{k})$, on considère les points A(1, -1, -1), B(0, -2, 1) et C(1, -2, 0)

- 0.75
- 1) a) Montrer que : $\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{\iota} + \overrightarrow{\jmath} + \overrightarrow{k}$
- 0.5
- b) En déduire que x + y + z + 1 = 0 est une équation cartésienne du plan (ABC)
- 0.75
- 2) Soit (S) la sphère d'équation : $x^2 + y^2 + z^2 4x + 2y 2z + 1 = 0$ Montrer que le centre de la sphère (S) est $\Omega(2, -1, 1)$ est que son rayon est $R = \sqrt{5}$
- 0,5
- 3) a) Calculer $d(\Omega, (ABC))$ la distance du point Ω au plan (ABC)
- 0,5
- b) En déduire que le plan (ABC) coupe la sphère (S) selon un cercle (Γ) (la détermination du centre et du rayon de (Γ) n'est pas demandée)

Exercice 2 (3 points):

- 0.75
- 1) Résoudre dans \mathbb{C} des nombres complexes l'équation : $z^2 2z + 4 = 0$
- 2) Dans le plan complexe rapporté à un repère orthonormé direct $(0; \vec{u}; \vec{v})$, on considère les points A,
 - B, C et D d'affixes respectives: $a = 1 i\sqrt{3}$, b = 2 + 2i, $c = \sqrt{3} + i$ et $d = -2 + 2\sqrt{3}$
- 0.5
- a) Vérifier que : $a d = -\sqrt{3}(c d)$
- 0,25
- b) En déduire que les points A, B et D sont alignés
- 3) On considère z l'affixe d'un point M et z' l'affixe de M' image de M par la rotation R de centre O et d'angle $\frac{-\pi}{2}$

4) Soient H l'image du point B par la rotation R, h son affixe et P le point d'affixe p tel que : p = a - c

- 0,5
- Vérifier que : $z' = \frac{1}{2}az$
- 0.5
- a) Vérifier que : h = ip
- 0.5
- b) Montrer que le triangle OHP est rectangle et isocèle en O

Exercice 3 (3 points):

Une urne contient dix boules: trois boules vertes, six boules rouges et une boule noire indiscernable au toucher. On tire au hasard et simultanément trois boules de l'urne

On considère les événements : A : « Obtenir trois boules vertes »

B: « Obtenir trois boules de même couleur »

C : « Obtenir au moins deux boules de même couleur »

- 2
- 1) Montrer que : $p(A) = \frac{1}{120}$ et $p(B) = \frac{7}{40}$
- 1
- 2) Calculer p(C)

rabie.isli@gmail.com 🛞 www.profrabiemaths.com

0,25

0.5

0,5

0.5

0.5

1

0,75

0,5

0,5

0,5

Session Normal

Problème (11 points):

Première partie:

Soit f la fonction numérique définie sur]0, + ∞ [par : $f(x) = x + \frac{1}{2} - \ln(x) + \frac{1}{2} (\ln(x))^2$

Et (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{\iota}; \vec{\jmath})$ (unité: 1 cm)

- 1) Calculer $\lim_{x\to 0} f(x)$ puis interpréter le résultat géométriquement 0,5
 - 2) a) Vérifier que pour tout x de]0, $+\infty$ [, $f(x) = x + \frac{1}{2} + (\frac{1}{2}\ln(x) 1)\ln(x)$
- b) En déduire que : $\lim_{x \to +\infty} f(x) = +\infty$ 0,5
 - c) Montrer que pour tout x de $]0, +\infty[$, $\frac{(\ln(x))^2}{x} = 4\left(\frac{\ln\sqrt{x}}{\sqrt{x}}\right)^2$ puis en déduire que : $\lim_{x \to +\infty} \frac{(\ln(x))^2}{x} = 0$
- d) Montrer que (C_f) admet au voisinage de $+\infty$ une branche parabolique de direction asymptotique 0,75 la droite (Δ) d'équation y = x
- 3) a) Montrer que pour tout x de]0,1]: $(x-1) + \ln(x) \le 0$ 0.5 et que pour tout de $[1, +\infty[: (x-1) + \ln(x) \ge 0]$
- b) Montrer que pour tout x de]0, $+\infty$ [, $f'(x) = \frac{x-1+\ln(x)}{x}$ 1 0,5
 - c) Dresser le tableau de variations de la fonction f 4) a) Montrer que : $f''(x) = \frac{2-\ln(x)}{x^2}$ pour tout x de]0, + ∞ [
 - b) En déduire que (C_f) admet un point d'inflexion dont on déterminera les coordonnées
 - 5) a) Montrer que pour tout x de]0, $+\infty$ [, $f(x) x = \frac{1}{2}(\ln(x) 1)^2$ et en déduire la position relative de (C_f) et (Δ)
 - b) Construire (Δ) et (C_f) dans le même repère ($O; \vec{i}; \vec{j}$)
- 6) a) Montrer que la fonction $H: x \mapsto x \ln(x) x$ est une primitive de la fonction $h: x \mapsto \ln(x)$ sur 0,5
 - b) A l'aide d'une intégration par parties, montrer que : $\int_1^e (\ln(x))^2 dx = e 2$
 - c) Calculer en cm^2 l'aire du domaine plan limité par (C_f) et (Δ) et les droites d'équations x = 1 et x = e

Deuxième Partie:

Soit (u_n) la suite numérique définie par : $u_0=1$ et $u_{n+1}=f(u_n)$ pour tout n de $\mathbb N$

- 1) a) Montrer par récurrence que : $1 \le u_n \le e$ pour tout n de N
 - b) Montrer que la suite (u_n) est croissante
 - c) En déduire que la suite (u_n) est convergente
- 0.75 2) Calculer la limite de la suite (u_n)

